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1 The Backdrop

It took humans less than a decade to reach a level of sophistication to reach a stage where with
less than a couple of keystrokes on a phone one could get the most elaborate meal delivered at
home. That’s the magic of the internet revolution. In recent times this trend has only gotten
sharper and sharper, with the on-demand delivery space heating up, an Indian consumer can
receive anything from an egg to the most lavish dinner faster than it takes to respond to a
slack message.

In fact, as of 2022 you can get most things delivered under 10 minutes! The implication of
this is that the customers do not need to plan anything much in advance and that the time
between desire, action, and gratification has shrunk to almost zero. One such Hypothetical
unicorn startup in this space is Hyper - Which started over two years ago and has seen massive
growth in a short period. Hyper is known mainly for its super fast, sub-10-minute delivery
of almost anything that one can think. However, In the past couple of weeks, the sentiment
trends around sub-10-minute style deliveries has been sharply negative due to various factors.
Especially concerned around the lack of empathy towards Hyper’s delivery partners. What
was once a strength seems to be turning into pain for the company. Many are asking if we
have gone too far.

Within this Hypothetical backdrop where Hyper is reevaluating its business strategy, Hyper’s
engineering team set’s forth on a journey to contribute towards its initiative of bringing a bit
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more balance within the marketplace. This marketplace is not overly user-centric but is also
fair for other stakeholders like delivery partners. Enter recommendation systems, systems that
sit at the heart of how most digital marketplaces perform. Most digital economies are shaped
by these systems. The scale, convenience, and speed of marketplaces like Hyper are enabled
by recommendation systems and search engines. Hence, what these systems optimize for and
how they behave are of critical importance. Within a marketplace, multiple factors come into
play, and the success of any given marketplace is closely tied to how you match, cater & satisfy
the requirements of all the stakeholders like the consumers, suppliers, and more. In a series
of articles, let’s dive deeper into how these systems are designed, optimized and explore the
inner workings and learn how some parts of these systems are built in practice.

But first, let’s establish a couple of definitions, terms & concepts.

1. Marketplace: An intermediary that helps facilitate economic interaction between
two or more sets of agents, these have existed since time immemorial as local
markets to shopping malls to modern digital experiences like amazon, Flipkart,
Swiggy, Instacart, etc - in fact, they are pretty much everywhere.

2. Differentiating factors of a marketplace: Marketplaces come in various shapes
and sizes, but at a high level they can be differentiated based on Need/Customer
coverage (horizontal vs vertical), Participant type (b2b vs b2c), Type of offering
(service, goods, information, etc). They can also be differentiated based on con-
trol and functionality styles (open, closed, focused, censored, etc), management
approach (unmanaged, lite, or fully managed) & lastly their transaction regularity
(one-off & repeat transactions).

3. Superstar economics: The Phenomenon of superstars, wherein a relatively small
number of people earn enormous amounts of money or value of some form and
dominate the activities in which they engage.

2 Introduction

At the core of any recommendation system, there would be something like a collaborative
filtering model (matrix factorization or tensor factorization), latent variable model, neural
embeddings-based model, or Neural Collaborative filtering models, and these systems would
come in one of these variants - Short vs Long term recommendations, cold start & cohort-based,
Multi view and multi-interest models or multi-task recommendations. The most common
trend in all these systems usually would be that they all are focused on delivering single
user-centric recommendations. These systems were designed to address concerns around user
needs, behavior, interests, interactions & personalization. Further, they are measured on user
engagement-oriented metrics.

But, caring only about a single user type, might not yield the most optimal outcome especially
when there are many stakeholders involved within a platform - aka recommendation systems
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within a marketplace-type setting could not be designed with a single entity in mind. This is
where the need for a recommendation system that caters to different stakeholders with different
sets of interests arises.

Hence, Recommendations in marketplaces are multi-sided. Equipped to cater not just to a
single user’s (aka buyer) needs, but also the supplier’s needs & most often they also have to
consider platform economics within the play. Such a system is usually designed with many ob-
jectives in mind - some of these objectives are User expectations, user understanding, supplier
exposure, supplier goals, platform objectives, and long-term value.

Now let’s further look into these different stakeholders, their objectives & the interplay between
these objectives that usually arise within this ecosystem.

2.1 Stakeholders, Objectives & the Objective interplay

In a multi-sided system with multiple objectives often the objectives interact and behave in
different manners. At a high level, you could categorize the different types of these interplay
as follows:

• Correlated : Optimising for one objective helps the other.
• Neutral: Optimising for one does not impact the other
• Anti Correlated: Optimising for one hurts the other

Consider the example of our Hypothetical on-demand delivery startup Hyper, which is a
three-sided marketplace - i.e it has three sets of stakeholders with different motivations &
objectives.

Stakeholder Needs/Motivations Potential Objectives
End User Wants to order something from

local partner shops.
• Quick delivery
• Best price
• Reliable merchants
• Fresh items

Merchants Provide online visibility and
find customers.

• Matching quality
• Exposure
• Minimise wastage

Delivery Partners Earn a stable livelihood. • Regularity in jobs
• Earnings per partner
• Efficient drop location

planning

As we see above each entity has a unique set of potential objectives one could optimise the
recommendation system for & this has to be done in a deliberate and careful way or it might
result in undesired outcomes.
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Researchers from Microsoft & Spotify found out that:

Recommendation systems in general suffer from what is called as an inherent
problem of “superstar economics”: rankings have a top and a tail end, not
just for popularity, but also for relevance. In an attempt to maximize user
satisfaction, recommender system optimize for relevance. This inadvertently
leads to lock-in of popular and relevant suppliers, especially for users who want
to minimize the effort required to interact with the system. A major side-effect
of the superstar economics is the impedance to suppliers on the tail-end of
the spectrum, who struggle to attract consumers, given the low exposure, and
thus, are not satisfied with the marketplace. Indeed, to continue to attract
more suppliers to the platform, marketplaces face an interesting problem of
optimizing their models for supplier exposure, and visibility. Indeed, the
suppliers (e.g. retailers, artists) would want a fair opportunity to be presented
to the users.

Read more about this in Towards a Fair Marketplace: Counterfactual Evaluation of the
trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems

In short, what a system optimizes for is super important & in general, it needs to look for a
balance while optimizing for various objectives.

Before we proceed further on how to optimize for multiple objectives let us quickly revisit
and see how most modern recommendation systems are built. Also, let’s do a quick recap of
how one builds a ranking model (aka Learning to rank) & some important metrics used for
measuring these systems.
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3 A Quick Recap on modern recsys

Over the past few years, a common and central design pattern has emerged around how most
industrial recommendation systems are designed. If one were to summarise this design pattern,
it would appear as described in the above figure - consisting of 4 stages. Let us take a brief
look at the functionality of these four stages:

3.1 Candidate retrieval

The Retrieval & filtering stages usually are collectively referred to as candidate generation. A
fast but coarse step which narrows down the search space of items from millions of candidates
for a given query to something in the order of 100s.

Often this is achieved by an initial retrieval with some form of matching between the query
and the catalog.Usually, via an ANN, Graph-based approach, or some form of a decision tree.
Followed by a filtering stage, where invalid candidates are removed from the initial retrieval
before passing on to the next stages.

3.2 Ranking

At this phase, we further narrow the initial set of items into a much smaller list to be presented
to the user. Which is a slow but more precise operation - this stage is usually modeled as
an LTR or a classification task. Further, sometimes it’s followed by an ordering stage which
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handles various business logic to reorder/sort the final list of items. Some common examples of
this business logic include: organizing recommendations to fit genre distributions in streaming
services or promoting specific segments of sellers as in the case of e-commerce.

Most Production recommendation systems are indeed complex in nature, but the above
pattern which was conceptulised at Nvidea by @Even_Oldridge & @karlhigley sort of
provides a good overview of how these systems are designed & to read a bit more on
this, refer to Recommender Systems not just recommender models article & also read
system-design-for-discovery from @eugeneyan where he summarises this design pattern
in depth and points to multiple examples from industry that follow this pattern.

4 A Quick Recap on Learning to Rank

Learning to rank (LTR) refers to a class of ML techniques for training a model to solve the
task of ranking a set of items. Usually, this is formulated as a supervised or sometimes semi-
supervised task.

Generally, this means we try to learn a function 𝑓(𝑞, 𝐷) given a query 𝑞 & a list of documents
𝐷 to predict the order/rank of the documents within this list. Depending on how the loss
function is formulated in the underlying task, any LTR algorithm can be classified into 3
distinct categories:

1. Pointwise method
2. Pairwise method
3. Listwise method

4.1 Ranking Task

Given a query 𝑞, and a set of 𝑛 documents 𝐷 = 𝑑1, 𝑑2, ..., 𝑑𝑛, we’d like to learn a function 𝑓
such that 𝑓(𝑞, 𝐷) will predict the relevance of any given document associated with a query.

4.2 Pointwise method

In pointwise method, the above ranking task is re-formulated as a standard classifica-
tion/regression task. The function to be learned 𝑓(𝑞, 𝐷) is simplified as 𝑓(𝑞, 𝑑𝑖) i.e the
relevance of each document given a query is scored independently.

For instance, if we have two queries associated with 2 and 3 resulting matched documents:

1. 𝑞1 → 𝑑1, 𝑑2
2. 𝑞2 → 𝑑3, 𝑑4, 𝑑5
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Then the training data 𝑥𝑖 in a pointwise method will essentially be every query-document pair
as follows:

1. 𝑥1 ∶ 𝑞1, 𝑑1
2. 𝑥2 ∶ 𝑞1, 𝑑2
3. 𝑥3 ∶ 𝑞2, 𝑑3
4. 𝑥4 ∶ 𝑞2, 𝑑4
5. 𝑥5 ∶ 𝑞2, 𝑑5

Since each document is scored independently with the absolute relevance as the target label, the
task is no different from any standard classification or regression task. As such any standard
ml algorithms can be leveraged in this setting.

4.3 Pairwise method

In pairwise method, the goal is to learn a pointwise scoring function 𝑓(𝑞, 𝑑𝑖) similar to a
pointwise formulation. However, the key difference arises in how the training data is consructed
- where we take pairs of documents within the same query as training samples.

1. 𝑥1 → 𝑞1, (𝑑1, 𝑑2)
2. 𝑥2 → 𝑞1, (𝑑3, 𝑑4)
3. 𝑥3 → 𝑞1, (𝑑3, 𝑑5)
4. 𝑥4 → 𝑞1, (𝑑4, 𝑑5)

In this setting, a new set of pairwise binary labels are derived, by comapring the individual
relevance score in each pair. For example, given the first query 𝑞1, if 𝑦1 == (i.e.. an irrelevant
document) for 𝑑1 & 𝑦2 = 3 (i.e.. a Highly relevant document) for 𝑑2 then we can create a new
label 𝑦1 < 𝑦2 for the pair of docs (𝑑1, 𝑑2) - by doing so we have essentially converted this back
to a binary classification task again.

Now in order to learn the function 𝑓(𝑞, 𝑑𝑖) which is still pointwise, but in a pairwise manner,
we model the difference in scores probablistically as follows:

𝑃(𝑖 > 𝑗) ≡ 1
1 + 𝑒𝑥𝑝−(𝑠𝑖−𝑠𝑗)

i.e, if document 𝑖 is better matched than document 𝑗 (denoted as 𝑖 > 𝑗), then the probability
of the scoring function to have scored 𝑓(𝑞, 𝑑𝑖) = 𝑆𝑖 should be close to 1. In other words, the
model is trying to learn, given a query, how to score a pair of documents such that a more
relevant document would be scored higher.

9



4.4 Listwise method

Listwise methods, solve the problem of ranking by learning to score the entire list jointly and
they do so via two main sub techniques:

• Direct optimization of IR measures such as NDCG.(Eg: SoftRank, AdaRank).
• Minimize a loss function that is defined based on understanding the unique properties

of the kind of ranking you are trying to achieve. (E.g. ListNet, ListMLE).

Let’s do a quick review of one of these approaches:

Consider ListNet, Which is based on the concept of permutation probability of a list of items.
In this case we assume there is a pointwise scoring function 𝑓(𝑞, 𝑑𝑖) used to score and rank a
given list of items. But instead of modeling the probability as a pairwise comparison using
scoring difference, we model the probability of the entire list of results. In this setting our
documents and query dataset would appear like this:

1. 𝑥1 ∶ 𝑞1, (𝑑1, 𝑑2)
2. 𝑥2 ∶ 𝑞2, (𝑑3, 𝑑4, 𝑑5)

First let’s look at the Permutation probability. Let’s denote 𝜋 as a specific permutation of a
given list of length 𝑛, Θ(𝑠𝑖) = 𝑓(𝑞, 𝑑𝑖) as any increasing function of scoring 𝑠𝑖 given a query 𝑞
and a document 𝑖. The probability of having a permutation 𝜋 can be written as follows:

𝑃(𝜋) =
𝑛

∏
𝑖=1

𝜙(𝑠𝑖)
∑𝑛

𝑘=𝑖 𝜙(𝑠𝑘)

To illustrate consider a list of 3 items, then the probability of returning the permutation
𝑠1,𝑠2,𝑠3 is calculated as follows:

𝑃(𝜋 = {𝑠1, 𝑠2, 𝑠3}) = 𝜙(𝑠1)
𝜙(𝑠1) + 𝜙(𝑠2) + 𝜙(𝑠3) ⋅ 𝜙(𝑠2)

𝜙(𝑠2) + 𝜙(𝑠3) ⋅ 𝜙(𝑠3)
𝜙(𝑠3)

Due to computational complexity, ListNet simplies the problem by looking at only the top-
one probability of a given item. The top-one probability of object i equals the sum of the
permutation probabilities of permutations in which object i is ranked on the top. Indeed, the
top-one probability of object i can be written as:

𝑃(𝑖) = 𝜙(𝑠𝑖)
∑𝑛

𝑘=1 𝜙(𝑠𝑘)

Given any two list of items represented by top-one probabilities, we can now measure the
difference between them using cross entropy. Then we can use an ml algorithm which minimises
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that cross entropy. The choice of function 𝜙(⋅), can be as simple as just an exponential function.
When 𝜙(⋅) is expotential and the list length is two, the solution basically reduces to a pairwise
method as described earlier.

With that brief introduction out of the way, let’s also quickly look at the advantages and
disadvantages of each of these approaches:

Method Advantages Disadvantages
Pointwise • Simplicity, Any standard ML

models can be applied without any
changes.

• The results can be often
sub-optimal due to not
utilizing the full information
of the entire list of matching
documents for each query.

• This requires explicit labels
while constructing the dataset,
and can be quite expensive.

Pairwise • We don’t need explicit labels, Only
pairwise preferences are required.

• The model learns how to rank
directly, even though its a pairwise
setting, but in theory it can
approximate the performance of a
general ranking task.

• The Core Scoring mechanism
is still pointwise. Hence, that
relative information in the
feature space among different
documents given the same
query is still not fully
leveraged.

Listwise • Theoretically this is a good solution
for a ranking task.

• Costly to compute in its
theoretical form and hence
several approximations are
used in practice.

• Scoring function is still
pointwise, which could be
sub-optimal.
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5 A Quick Recap on Ranking Evaluation metrics

Over the years, Several metrics have been proposed and widely used for evaluating a ranking
model. If we were to summarise them and list the most popular metrics it boils down to this:

Metric Type Metric
Binary Relevance Mean Average Precision (MAP)
Binary Relevance Mean Reciprocal Rank (MRR)
Graded Relevance Normalized Discounted Cumulative Gain (NDCG)
Graded Relevance Expected Reciprocal Rank (ERR)

In general, binary metrics only consider relevant & irrelevant items, while graded metrics
consider the ranking among relevant items. The degree of relevancy matters in this case when
scoring a list of items.

5.1 Mean Average Precision (MAP)

MAP is a measure based on binary label of relevancy. To compute this first we define precision
at k for a given query 𝑃 @𝑘(𝑞) as:

𝑃@𝑘(𝑞) ≡ ∑𝑘
𝑖=1 𝑟𝑖
𝑘

for an ordered list of prediction 𝑟𝑖 for all 𝑘 items. 𝑟𝑖 = 1 if it is relevant and 0 otherwise.Then
we define the average precision given a query 𝐴𝑃(𝑞) at 𝑘 items as:

𝐴𝑃(𝑞)@𝑘 ≡ 1
∑𝑘

𝑖=1 𝑟𝑖

𝑘
∑
𝑖=1

𝑃@𝑖(𝑞) × 𝑟𝑖

Mean Average Precision is just the mean of 𝐴𝑃(𝑞) for all queries:

𝑀𝐴𝑃 ≡
∑𝑄

𝑞=1 𝐴𝑃(𝑞)
𝑄

Also, MAP is an order sensitive metric because of the term 𝑟𝑖 in the calculation of AP. It is
essentially taking the average of precision at each ranking position and penalizing the precision
at positions with irrelevant item by strcitly setting them to zeroes.

Here is a simple example for computing MAP:
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5.2 Mean Reciprocal Rank (MRR) & Expected Reciprocal Rank (ERR)

Reciprocal rank metrics focus mainly on the first correctly predicted relevant item in a list.
Given a list of items, and say 𝑟𝑖 is the rank of the highest ranking relevant item & if the the
2nd item is the first relevant item in the list, then the reciprocal rank for this query would
be 1

2 . By extension, each query will have a reciprocal rank. Hence, Mean reciprocal rank is
essentially the average of reciprocal rank for all the queries, which would be represented as
follows:

𝑀𝑅𝑅 ≡ 1
𝑄

𝑄
∑
𝑖=1

1
𝑟𝑖

Expected reciprocal rank tries to quantify how useful a document at rank 𝑖 conditioned on
the degree of relevance of documents at rank less than 𝑖 are. The intution behind this is
based on the empirical findings from web search task, that the likelihood a user will examine
the document at rank 𝑖 is dependent on how satisfied the user was with previously observed
documents in the list.

Lets assume the probability of a user finding the result is satisfied at position 𝑖 in a list of
items is denoted as 𝑅𝑖 & the likelihood of a session for which the user is satisfied and stops at
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position 𝑟 is:
𝑟−1
∏
𝑖=1

(1 − 𝑅𝑖)𝑅𝑟

Now we can model 𝑅𝑖 such that it is an increasing function of relevance:

𝑅 = 𝑅(𝑔) ≡ 2𝑔 − 1
2𝑔𝑚𝑎𝑥

where 𝑔 is the graded relevance such that 𝑔 ∈ {0, 1, ..., 𝑔𝑚𝑎𝑥} & 𝑔 = 0 implies an irrelevant
document and 𝑔 = 𝑔𝑚𝑎𝑥 implies a relevant document.

Now we can define ERR as follows:

𝐸𝑅𝑅 ≡
𝑛

∑
𝑟=1

1
𝑟 𝑅𝑟

𝑟−1
∏
𝑖=1

(1 − 𝑅𝑖)

Here 1
𝑟 is treated as a utility function 𝜏(𝑟) that satisfies 𝜏(1) = 1 and 𝜏(𝑟) → 0 as 𝑟 → ∞.

Note that ERR is a metric on a list with a single query, To evaluate results from multiple
queries, we will need to further average ERRs among queries.

Here is a simple example for computing MRR:
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5.3 Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain (NDCG) is one of the most popular metric for mea-
suring the quality of a set of ranked items in search or recommendations. If we were to break
the assumptions made by this metric in simple terms, it would be as follows:

1. Cumulative Gain: Very relevant items are more useful than somewhat relevant items
which are more useful than completely irrelevant items.

2. Discounting: Relevant items are more useful when they appear earlier in a list of ranked
items.

3. Normalization: The ranking results should be irrelevant to the query performed.

Let’s define Discounted Cumulative Gain at position 𝑘 as follows:

𝐷𝐶𝐺@𝑘 ≡
𝑘

∑
𝑖=1

2𝑙𝑖 − 1
𝑙𝑜𝑔2(𝑖 + 1)

where 𝑙𝑖 is the grading of relevance at rank 𝑖. Intutively, the numerator is simply an increasing
function of relevance, the more relevant the higher. This is the gain from each item. The
denominator is a decreasing function of ranking position, this is the discounted component
of the metric. Collectively, higher relevance gains more score, but the lower it is ranked the
higher also the discount. Essentially, the metric will prefer higher relevant item to be ranked
higher, which is the desired outcome.

NDCG is then defined as:

𝑁𝐷𝐶𝐺@𝑘 = 𝐷𝐶𝐺@𝑘
𝐼𝐷𝐶𝐺@𝑘

where 𝐼𝐷𝐶𝐺@𝑘 is the Ideal DCG@k given the result. DCG@k is calculated by sorting the
given list of items by its true relevance labels. and IDCG@k is the maximum possible DCG@K
value one can get given a ranked list of items.

Here is a simple example for computing NDCG:
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6 Learning to rank with Multiple Objectives

6.1 MOO - The What, The Why & The How.

After that long detour, let’s now look into Multiple Objective Optimisation applied to Ranking
problem within a marketplace setting involving multiple stakeholders. Let’s do so with a simple
illustrative example that involves similar item recommendations. Specifically, let’s understand
Why this is needed first.

Picture this, A User has browsed and explored a bunch of different red shirts they are planning
to buy, and on one such open tab we’ve got a shirt that they are closely examining. Now, the
recommendation system in the backend is also generating a bunch of similar shirts that they
might be interested to explore. Let’s say the recommendation system is optimising for two
different objectives - firstly, to show relevant and personalised shirts similar to their style based
on interaction history. Secondly, the platform also wants to make sure it’s making a good profit
on each sales that the recommendation system generates or leads to. Hence, they would also
want to promote shirts with good porfit margin. How would we do this?

Let’s start by defining our objectives:

Objective I Objective II
Personalisation Price Margin

Let’s also say the item options available to us to be displayed (let’s focus on finding the top-1
item at the moment.) if plotted on a graph look something like this:
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Now, essentially we want to maximise profit margin but also we want to maximise for highly
personalised & relevant shirt. If we were to solve this from a lens of single objectve optimisation
two scenarios would arise:

1. Case-I: Applying 1D Optimisation to objective I followed by optimising for objective II,
i.e First we can find Highly Personalised shirts and then search for the shirt that also
provides maximum margin.

2. Case-II: Applying 1D Optimisation to objective II followed by optimising for objective
I, i.e First we can find High Profit margin shirts and then search for the ones which are
also Highly Personalised & relevant for the user’s style.

For a simple and better understanding of the concept, assume that someone is trying to find
the best red shirt from both the perspectives manually in a physical store, and let’s further
also assume its a dark room.
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6.1.1 Case I : Highly Personalised & High Profit margin

1. So, in this case the solver turns the torch on towards the relevance axis and discovers 𝑇 5
as the most suitable candidate.

2. Now from this point the solver turns towards the profit axis and turns the torch on and
discovers 𝑇 6.

6.1.2 Case II : High Profit margin & High Personalisation

1. In this case the solver turns the torch on towards the profit axis and discovers 𝑇 3 as the
best candidate.
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2. Now from this point the solver turns towards the relevance axis and turns the torch on
and discovers 𝑇 4.

What do we have as of now:

Process 1st Optimization Objective 2nd Optimization Objective Optimal Solution
1 Personalisation Profit Margin 𝑇 6
2 Profit Margin Personalisation 𝑇 4

So, that seems odd. There are multiple solutions. Depending on what we want to achieve- If
we want to optimize for both objectives and find the best solution, Going about in the above
method is not the best way. Instead, we need to optimize to find solutions for both objectives
collectively. The set of optimization methods that enables this is called Multiple Objective
Optimization.

Let’s define what MOO is & try to understand some other key concepts associated with it.

MOO: Optimization that involves identifying the values of decision (or free) variables
that generate the maximum or minimum of one or more objectives. In most engineering
problems, there may exist multiple, conflicting objectives and solving the optimization
problems is not trivial or may not be even feasible sometimes. One way to formulate this
is as follows:
Given 𝑚 inequality constraints & 𝑝 equality constraints identify a vector ̄𝑥∗

𝑛 =
[𝑥∗

1, 𝑥∗
2, ..., 𝑥∗

𝑛]𝑇 that optimizes

̄𝑓𝑘( ̄𝑥𝑛) = [𝑜1( ̄𝑥𝑛), 𝑜2( ̄𝑥𝑛), ..., 𝑜𝑘( ̄𝑥𝑛)]𝑇

such that

𝑔𝑖( ̄𝑥𝑛) ≥ 0, 𝑖 = 1, 2, ..., 𝑚

ℎ𝑖( ̄𝑥𝑛) = 0, 𝑖 = 1, 2, ..., 𝑝
where ̄𝑥𝑛 = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 is a vector of 𝑛 decision variables. The constraints deter-
mine the “feasible region” 𝐹 and any point ̄𝑥𝑛 ∈ 𝐹 gives a “feasible solution” where
𝑔𝑖( ̄𝑥𝑛) and ℎ𝑖( ̄𝑥𝑛) are the constraints imposed on decision variables. The vector function

̄𝑓𝑘( ̄𝑥𝑛) above is a set of 𝑘 objective functions, 𝑜𝑖( ̄𝑥𝑛) for 𝑖 = 1, · · ·, 𝑘, representing k
non-commensurable criteria.
Pareto Optimum: A point ̄𝑥∗ is “Pareto optimal” (for minimisation task) if the follow-
ing holds for every ̄𝑥𝑛 ∈ 𝐹

̄𝑓𝑘( ̄𝑥∗
𝑛) ≤ ̄𝑓𝑘( ̄𝑥𝑛)
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where ̄𝑓𝑘( ̄𝑥𝑛) = [𝑜1( ̄𝑥𝑛), 𝑜2( ̄𝑥𝑛), ..., 𝑜𝑘( ̄𝑥𝑛)]𝑇 , ̄𝑓∗
𝑘( ̄𝑥∗

𝑛) = [𝑜1( ̄𝑥∗
𝑛), 𝑜2( ̄𝑥∗

𝑛), ..., 𝑜𝑘( ̄𝑥∗
𝑛)]𝑇

Pareto optimality gives a set of nondominated solutions. A feasible solution 𝑥 is called
“weakly nondominated” if there is no 𝑦 ∈ 𝐹 , such that 𝑜𝑖(𝑦) < 𝑜𝑖(𝑥) for all 𝑖 = 1, 2, ..., 𝑘.
This means that there is no other feasible solution that can strictly dominate 𝑥. A feasible
solution 𝑥 is called “strongly nondominated” if there is no 𝑦 ∈ 𝐹 , such that 𝑜𝑖(𝑦) ≤ 𝑜𝑖(𝑥)
for all 𝑖 = 1, 2, ...𝑘, and 𝑜𝑖(𝑦) < 𝑜𝑖(𝑥) for at least one 𝑖. This means that there is no other
feasible solution that can improve some objectives without worsening at least one other
objective. If 𝑥 is “strongly nondominated”, it is also “weakly nondominated”.
Pareto Frontier: A set (of feasible solutions) that is Pareto efficient is called the Pareto
frontier, Pareto set, or Pareto front. The optimal solutions can be determined based on
the tradeoffs within this set based on a designer’s decisions for acceptable performance.
read more on this from A Survey on Modeling and Optimizing Multi-Objective Systems

6.2 Popular methods applied to LTR Setting.

Over the years, numerous approaches have been applied in LTR settings. Broadly most of
these approaches can be classified into four categories as follows:

1. Label Aggregation
2. Constraint Optimization
3. Model Fusion/Aggregation
4. Lexicographic

Now, lets us define these approaches.

6.3 Label Aggregation

In this method, we combine all objective functions to form a single objective function which
is then minimized. Once we convert the multi-objective into a single objective by combing
the labels, we solved the given LTR problem as the single objective function. Let’s say for
given query q, and products P, we have two different labels, ℓ1(𝑞, 𝑝) a similarity score between
query and prodct, and ℓ2(𝑝) a profit margin for a product, we can put a new label as ℓ(𝑞, 𝑝) =
𝛼 · ℓ1(𝑞, 𝑝) + (1 − 𝛼) · ℓ2(𝑝)
Note: Here 𝛼 is manually chosen by the user. If 𝛼 ∈ {0, 1}, the problem is reduced to a single
objective optimization.

In general, given k objectives rank function looks like below:

Minimise,
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𝑓(𝑥) =
𝑘

∑
𝑖=1

𝛼𝑖 ∗ 𝑓𝑖(𝑥)

Subject to
𝑘

∑
𝑖=1

𝛼𝑖 = 1

6.3.0.1 Advantages

1. It gives a clear interpretation of the multi-objective function and generalize it.
2. It allows multiple parameters to be set to reflect preferences.

6.3.0.2 Disadvantages

1. It tries to optimize for each objective function, which can be computationally expensive.
2. The setting of parameters (𝛼𝑖) is not intuitively clear when only one solution point is

desired.

6.4 Constraint Optimization

This method optimizes the single most important objective 𝑓𝑝𝑟𝑖𝑚𝑎𝑟𝑦(𝑥) and treat the other
objectives as constraints with pre-determined upperbound. As we saw eariler, let’s say have
two objectives to optimize. First objective is ℓ1(𝑞, 𝑝) - similarity score between (𝑝, 𝑞) and
second ℓ2(𝑝) - profit margin for 𝑜. Then we could consider ℓ1(𝑞, 𝑝) as primary objective and
ℓ2(𝑝) as secondary objective. In this method we will optimize for primary objective ℓ1(𝑞, 𝑝)
subject to ℓ2(𝑝) ≲ 𝜖.
In general, given k objectives the ranking function is as follows:

min
∀𝑥𝑖

𝑓𝑙(𝑥)

Subject to
𝑓𝑖(𝑥) ≲ 𝜖𝑖, ∀𝑖 ≠ 𝑙,

𝜖𝑖 is upperbound for 𝑓𝑖(𝑥). And, 𝑓𝑙(𝑥) is the primary function to optimize.
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6.4.0.1 Advantages

1. It focuses on a single objective with limits on others.
2. It always provides a weakly Pareto optimal point, assuming that the formulation gives

a solution.
3. It is not necessary to normalize the objective functions.

6.4.0.2 Disadvantages

1. The optimization problem may be infeasible if the bounds on the objective functions are
not appropriate.

6.5 Model Fusion/Aggregation

This method is an aggregation of multiple independent ranking models. The final ranking socre
is obtained by a convex combination of multiple models. As we saw earlier if we have two
objectives, let’s say ℓ1(𝑞, 𝑝) - similarity between query and product and ℓ2(𝑝) - profit margin.
Then first we train the 𝑀𝑙1 model which optimizes for similarity score between (q,p). And
further we also independently train another model 𝑀𝑙2 which optimizes for the profit margin.
The linear combination of the models can be formulated as 𝑀(𝑞, 𝑝) = 𝛼 · 𝑀𝑙1(𝑞, 𝑝) + (1 − 𝛼) ·
𝑀𝑙2(𝑝), where the hyperparameter 𝛼 ∈ [0, ., ., 1] controls the tradeoff between the two model
scores.

In general, given k objectives the ranking function looks as follows:

𝑀(𝑥) =
𝑘

∑
𝑖=1

(𝛼𝑖 ∗ 𝑀𝑖(𝑥))

where, 𝑀𝑖(𝑥) is an independently trained model for optimizing 𝑖𝑡ℎ objective.

6.5.0.1 Advantages

2. This is used as a post-rank method, and as such easy to tweak weighting parameters.
3. Learning for one single objective will not be affected by other objectives (decoupled

objectives).

6.5.0.2 Disadvantages

1. It’s difficult to find the optimal weight for the final ranking.
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6.6 Lexicographic

When we have more than one objective, we rank the items by ordering the objective functions
according to their importance. As mentioned earlier, we have two objective functions, ℓ1(𝑞, 𝑝)
similarity between query and product as pprimary objective and ℓ2(𝑝) profit margin as the
secondary objective. Then We will order the items according to the primary objective ℓ1(𝑞, 𝑝)
and if a tie happens, then we use ℓ2(𝑝) the secondary objective score to break the tie.

In general, given k objectives, the rank function looks like below:

Minimise,

𝑓𝑖(𝑥)

Subject to
𝑓𝑗(𝑥) ≲ 𝑓𝑗(𝑥∗

𝑗)
𝑗 = 1 to (𝑖 − 1) and 𝑖 > 1 ; 𝑖 = 1 to 𝑘
Here, we rank the function based on 𝑓𝑖, and where a tie occurs we break the tie based on 𝑓(𝑖+1)
score.

6.6.0.1 Advantages

1. It is a unique approach to specifying preferences.
2. It does not require that the objective functions be normalized.

6.6.0.2 Disadvantages

1. It requires that additional constraints be imposed.
2. It is computation heavy if we have more objectives.
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6.7 Few Examples in the Wild

6.7.1 A Multi-Objective Learning to Re-Rank Approach to Optimize Online
Marketplaces for Multiple Stakeholders.

Read the Original Paper over here: Original Paper

First, let’s look at an example from Expedia. Being a service provider they are trying to
optimize for the following objectives:

1. Consumer’s Conversion Rate or Click Through Rate.
2. Maximum transaction commission from the supplier.

A supplier pays a marginal amount of the sales transaction as a commission to the platform.
Let’s say the product’s cost is 𝑐 and the selling price is 𝑝 then the margin is 𝑚 = 𝑝 − 𝑐.

To achieve the above objectives, the optimization function is defined as follows:

max
𝛼,𝛽

𝐿(𝑚|𝑢) =
𝑛

∑
𝑖=1

log(𝑢𝑖) + 𝛼 log(𝑝𝑖) + 𝛽 log(𝑚𝑖
𝑝𝑖

)

where 𝛼 and 𝛽 are tuning parameters.

log(𝑢𝑖) = User possibility to do transaction.

log(𝑝𝑖) = supplier interest for selling the product at price 𝑝.

log(𝑚/𝑝) = profit margin define as percentage here.

In these objective functions, we have contradictory relations with suppliers and consumers by
nature. On the other side, service providers want higher commission benefits from suppliers at
an indirect cost to consumers. For such problems, there is no unique Pareto optimal solution
because of the complex and opposing interactions of the different stakeholder interests.

Here they give priority to promoting items to higher positions that better satisfy a transaction
commission objective while staying as close as possible to the original ranking. The new
ranking score function looks like the below:

∀𝑢 ∈ 𝑢, 𝑢′ = 𝑢 + 𝛼 log(𝑝) + 𝛽(𝑥, 𝑚) log(𝑚
𝑝 )

To reduce the distance between the new vs old score vectors, they use the Kendall tau corre-
lation measure. The updated objective function looks like the below:

min
𝛼,𝛽

𝐿(𝑚|𝑢, 𝑋) = 𝐿𝑟(𝑚
𝑋 ) + 𝛾(1 − 𝐾′(𝑢, 𝑢′))
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Here, 𝐾′(𝑢, 𝑢′) is playing the role of a similarity-based regularizer with the original ranking
order u being the reference point to the new ranking order 𝑢′ . The hyperparameter 𝛾 gives
the balance between our objective function.

To evaluate the LTR method, they use an in-house Expedia dataset built from worldwide hotel
searches collected during 2016. The new ranking methods give a lift� of +16.7% on the NDCG
of margin, but at the same time, this incurs a decrease of -5.9% in terms of the NDCG of
customer preferences.

The paper also uses the following formula to calculate the risk and reward to further evaluate
the new objective function:

𝑅𝑖𝑠𝑘 = 1
|𝑞| ∑

𝑞
𝑁𝐷𝐶𝐺@10(𝐿𝑅𝑅) < 𝑁𝐷𝐶𝐺@10(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑅𝑒𝑤𝑎𝑟𝑑 = 1
|𝑞| ∑

𝑞
𝑁𝐷𝐶𝐺@10(𝐿𝑅𝑅) > 𝑁𝐷𝐶𝐺@10(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

They have found that the risk is lower than the baseline and the reward much higher.

This experiment shows that multi-objective is always a trade-off between the two objectives:
Conversion rate vs Margin. They would like to further test with real-world performance via
𝐴/𝐵 testing.
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6.7.2 Joint Optimization of Profit and Relevance for Recommendation Systems in
E-commerce

Read the Original Paper over here: Original Paper

Traditionally, e-commerce-based recommendation systems focus on optimizing for relevance
by predicting the purchase or click probability of an item. The relevance-centric approach is
capable to increased the conversion rate but does not guarantee a maximum profit for either a
platform or seller. In this paper from Etsy, where they discussed a novel revenue model, which
optimizes for two objectives:

1. Maximising the Revenue
2. The probability of the purchase.

To maximize the likelihood, the objective function is defined as follows:

max
𝑤∈𝑅𝑛,𝑏∈𝑅

𝑙(𝑤, 𝑏) ∶= −
𝑚

∑
𝑖=1

log(1 + 𝑒𝑥𝑝(−𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏)))

Here, 𝑥𝑖 = 𝑖𝑡ℎ training sample 𝑥𝑖 ∈ 𝑅𝑛 𝑦𝑖 = label whether a recommended item is purchased
or not

Let’s say 𝜋𝑖 is the price of item, then the objective function for maximizing profit is as below:

𝜌(𝑤, 𝑏) ∶=
𝑚

∑
𝑖=1

𝐸[𝜋𝑖, 𝑦𝑖] =
𝑚

∑
𝑖=1

𝜋𝑖(2𝑝𝑟𝑜𝑏[𝑦𝑖 = 1|𝑥𝑖; 𝑤] − 1)

=
𝑚

∑
𝑖=1

2𝜋𝑖𝜎(𝑤𝑇 𝑥𝑖 + 𝑏) − 𝜋𝑖,

The combined objective function will be:

max
𝑤∈𝑅𝑛,𝑏∈𝑅

𝑙(𝑤, 𝑏) + 𝜇𝜌(𝑤, 𝑏)

To optimise the above objective, (𝑤, 𝑏) parameters need to be found which can fit 𝑙(𝑤, 𝑏) to
maximise the likelihood while maximizing the expected revenue (via 𝜌(𝑤, 𝑏)). Here, 𝜇 ≥ 0 is a
hyperparameter of the model that controls the tradeoff between the two objectives. Once the
optimal parameters are learned, they use them to rank a set of candidate items.

They have used the following metrics to evaluate the performance of the proposed model

1. Profit@K: profit generate by kth highest ranked item
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2. Average price: Average price of the k highest ranked item
3. AUC: to measure relevance
4. NDCG@5

Etsy has done an offline evaluation of the proposed model. They found the proposed revenue
model attains the highest AUC and profit@k for all K values. Note they used K value up to
3. They observe that the revenue model has a 3.57% increase in AUC and 9.50% in profit@1
compared to the baseline model. Also increases P-NDCG@k and AP@k for all k by at least
3.57% and 23.08% However, the proposed model results in a 10.76% and 16.06% decrease in
AUC compared to the baseline.

The overall revenue model can increase profit for the platform while retaining high relevancy
for users. They would like to assess revenue model performance in the face of real user traffic
via an online A/B experiment.
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6.7.3 Using Bayesian optimization for balancing metrics in recommendation systems

Read the Original article over here: Original Article

Let’s now look into an article from Linkedin where they describe their approach towards
building their notifications recommendation system, which notifies members about various
activities within their network. To build an efficient notification system, they are optimizing
for the following objects:

1. CTR
2. Number of sessions (i.e the user visits & app open rate)

The CTR and session objectives can be conflicting, because sending more notifications to
members may lead them to visit an app frequently. And It increases the overall number of
sessions but on the other side, it can decrease CTR because of the quality of the notification.

The overall objective function they define is as follows:

𝑝𝑐𝑙𝑖𝑐𝑘 + 𝛼 ∗ Δ𝑝𝑣𝑖𝑠𝑖𝑡 > 𝛾

where,

1. 𝑝𝑐𝑙𝑖𝑐𝑘 is the probability of click by member
2. Δ𝑝𝑣𝑖𝑠𝑖𝑡 can be defined as 𝑝(𝑣𝑖𝑠𝑖𝑡

𝑠𝑒𝑛𝑡 ) - 𝑝( 𝑣𝑖𝑠𝑖𝑡
𝑛𝑜𝑡𝑠𝑒𝑛𝑡). Which is basically the difference between

sending a notification now vs not sending a notification.
3. 𝛼 is the hyperparameter that measures the relative importance of the two utilities.
4. 𝛾 is the threshold applied.

Finding an optimal value of 𝑥 = {𝛼, 𝛾} can maximize the sessions without compromising on
CTR and send volume. To ensure the overall performance, they used 𝑐1 and 𝑐2 constraints as
contained for CTR(x), and Send Volume(x).

The updated objective function looks like the below:

max
∀𝑥𝑖

, 𝑓𝑠𝑒𝑠𝑠𝑖𝑜𝑛(𝑥)

Such that,
𝑓𝐶𝑇 𝑅(𝑥) > 𝑐1, 𝑓𝑠𝑒𝑛𝑡𝑉 𝑜𝑙𝑢𝑚𝑒(𝑥) < 𝑐2

Using the above constraints, they define a single objective function as below:

max
𝑥

𝑓(𝑥) = 𝑓𝑠𝑒𝑠𝑠𝑖𝑜𝑛(𝑥) + 𝜆(1{𝑓𝐶𝑇 𝑅(𝑥) > 𝑐1} + 1{𝑓𝑠𝑒𝑛𝑡𝑉 𝑜𝑙𝑢𝑚𝑒(𝑥) < 𝑐2}),
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By converting a MOO into SOO using constrained-based optimization, they learn global hy-
perparameters (i.e., a single value) for all members. Further, they evaluate and improve upon
this via online A/B experiments.

7 Conclusion

In this rather long post, we looked into common design patterns for building modern recommen-
dation systems, Common styles of training ranking models & Popular metrics for evaluating
these systems and also looked at the task of multiple objective optimizations and their appli-
cation within Learning to rank. We also looked at a few examples of multi-objective ranking
from the industry - and one common trend that we observed is that simple techniques like
label aggregation, model aggregation, or constrained optimization work surprisingly well in
practice.

For any suggestions/feedback or improvements to this article - or maybe just for a casual
chat feel free to reach out to us: Bharath G.S & Rita Anjana & if you found this article
useful - Please share it with others and let us know!
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